The realization space is [1 x1^2 1 0 0 1 x1^2 -x1 + 1 0 -x1^2 + x1 x1^3] [1 2*x1^2 - 3*x1 + 1 0 1 0 1 2*x1^2 - 3*x1 + 1 0 1 -2*x1 + 1 4*x1^2 - 4*x1 + 1] [0 0 0 0 1 1 2*x1^2 - 3*x1 + 1 -2*x1 + 1 x1 -2*x1^2 + x1 2*x1^3 - 3*x1^2 + x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (4*x1^11 - 36*x1^10 + 121*x1^9 - 196*x1^8 + 170*x1^7 - 81*x1^6 + 20*x1^5 - 2*x1^4) avoiding the zero loci of the polynomials RingElem[2*x1 - 1, x1 - 1, x1, x1^2 - 3*x1 + 1, x1 - 2, x1^2 + x1 - 1, x1^2 - x1 + 1, x1^3 - 2*x1^2 + 3*x1 - 1, x1^3 - 5*x1^2 + 4*x1 - 1]